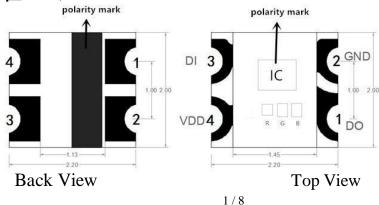
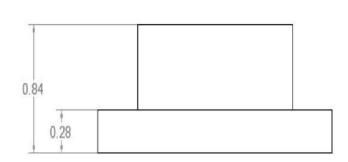
主要特点

- IC 控制电路与 LED 点光源共用一个电源。
- 每个通道工作电流 5mA.
- 控制电路与 RGB 芯片集成在一个 2020 封装的元器件中,构成一个完整的外控像素点。
- 内置信号整形电路,任何一个像素点收到信号后经过波形整形再输出,保证线路波形畸变不会累加。
- 内置上电复位和掉电复位电路。
- 每个像素点的三基色颜色可实现 256级亮度显示,完成 16777216种颜色的全真色彩显示。
- 端口扫描频率 2KHz/s。
- 串行级联接口,能通过一根信号线完成数据的接收与解码。
- 任意两点传输距离在不超过5米时无需增加任何电路。
- 当刷新速率 30 帧/秒时,级联数不小于 1024 点。
- 数据发送速度可达 800Kbps。
- 光的颜色高度一致,性价比高。

主要应用领域


- LED 全彩发光字灯串, LED 全彩软灯条硬灯条, LED 护栏管。
- LED 点光源, LED 像素屏, LED 异形屏, 各种电子产品, 电器设备跑马灯。

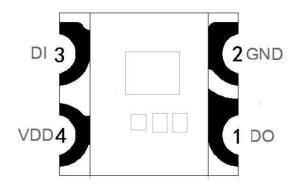
产品概述


WS2812C-2020 是一个集控制电路与发光电路于一体的智能外控 LED 光源; 其外型采用最新的 molding 封装工艺,将 IC 与发光芯片封装在一个 2020 的封装尺寸中,每个元件即为一个像素点; 像素点内部包含了智能数字接口数据锁存信号整形放大驱动电路,还包含有高精度的内部振荡器和可编程定电流控制部分,有效保证了像素点光的颜色高度一致。

数据协议采用单线归零码的通讯方式,像素点在上电复位以后,DIN 端接受从控制器传输过来的数据,首先送过来的 24bit 数据被第一个像素点提取后,送到像素点内部的数据锁存器,剩余的数据经过内部整形处理电路整形放大后通过 DO 端口开始转发输出给下一个级联的像素点,每经过一个像素点的传输,信号减少 24bit;像素点采用自动整形转发技术,使得该像素点的级联个数不受信号传送的限制,仅受限信号传输速度要求;高达 2KHz 的端口扫描频率,在高清摄像头的捕捉下都不会出现闪烁现象,非常适合高速移动产品的使用; 280μs以上的 RESET 时间,出现中断也不会引起误复位,可以支持更低频率、价格便宜的 MCU;LED 具有低电压驱动、环保节能、亮度高、散射角度大、一致性好超、低功率及超长寿命等优点。将控制电路集成于 LED 上面,电路变得更加简单,体积小,安装更加简便。

机械尺寸(单位 mm)

http://www.ykgdled.com



0.7 - 0.7 -

Side View

PCB Solder Pad

引出端排列

引脚功能

序号	符号	管脚名	功 能 描 述
1	DO	数据输出	控制数据信号输出
2	GND	地	信号接地和电源接地
3	DI	数据输入	控制数据信号输入
4	VDD	电源	供电管脚

最大额定值(如无特殊说明, T_A=25℃, V_{SS}=0V)

参数	符号	范围	单位
电源电压	$V_{ m DD}$	+3.7~+5.3	V
逻辑输入电压	VI	VDD-0.7∼VDD+0.7	V
工作温度	Topt	<i>-</i> 25∼+85	${\mathbb C}$
储存温度	Tstg	-40~+105	${\mathbb C}$

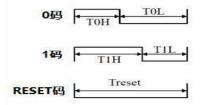
电气参数(如无特殊说明, T_A=25℃, V_{DD}=5V,V_{SS}=0V**)**

参数	符号	最小	典型	最大	单位	测试条件
输入电流	Ιι			±1	μΑ	$V_I = V_{DD}/V_{SS}$
高电平输入	V _{IH}	$0.7V_{\mathrm{DD}}$	——	——	V	DIN, SET
低电平输入	$V_{\rm IL}$			$0.3~\mathrm{V}_\mathrm{DD}$	V	DIN, SET
滞后电压	V _H		0.35		V	Din, SET

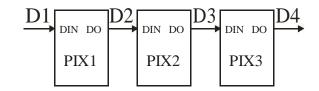
开关特性(如无特殊说明, T_A=25℃, V_{DD}=5V,V_{SS}=0V**)**

参数	符号	最小	典型	最大	单位	测试条件
传输延迟时间	t PLZ			300	ns	CL=15pF, DIN→DOUT, RL=10KΩ
下降时间	tтнz	——	——	120	μs	CL=300pF, OUTR/OUTG/OUTB
输入电容	Cı			15	pF	

LED 特性参数

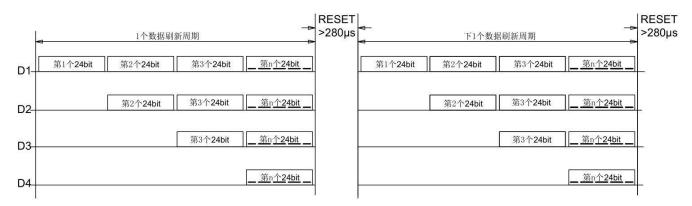

			青	3mA		测试条件:		
参数	符号	颜色	最小值	典型值	最大值	单位	(工作电流)	
		Red	33		40			
发光	IV	Green	120		144	mcd	5mA	
强度		Blue	28		34			
		Red	620		625			
波长	λd	Green	520		525	nm	5mA	
		Blue	460		465			

数据传输时间


ТОН	0码, 高电平时间	220ns~380ns
T1H	1码, 高电平时间	580ns~1 μs
T0L	0码, 低电平时间	580ns~1 μs
T1L	1码, 低电平时间	220ns~420ns
RES	帧单位,低电平时间	280 µs 以上

时序波形图

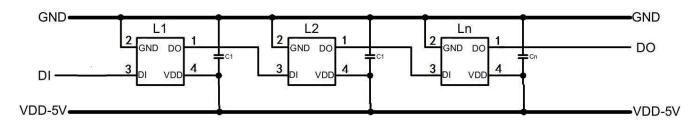
输入码型:


连接方法:

3/8

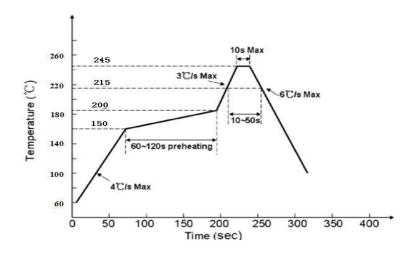
http://www.ykgdled.com

数据传输方法


注: 其中 D1 为 MCU 端发送的数据, D2、D3、D4 为级联电路自动整形转发的数据。

24bit 数据结构

_																								
- [1		1	
	G7	G6	G5	G4	G3	G2	G1	G0	R7	R6	R5	R4	R3	R2	R1	R0	В7	B6	B5	B4	B3	B2	B1	B0
	0,	GU	G5	01	03	02	O1	GU	10,	100	103	1	103	112	1(1	100	Β,	Do	DJ	ישן	D 3	DZ	Di	Do
																					1 '	1	1 '	1


注: 高位先发, 按照 GRB 的顺序发送数据。

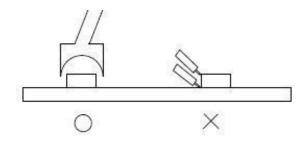
典型应用电路

其中 C1 为灯珠 VDD 脚的滤波电容,一般取值 100NF.

无铅回流焊指引

曲线说明	无铅回流焊
最低预热温度(Tsmin)	150℃
最高预热温度(Tsmax)	200℃
预热区时间(Tsmin to Tsmax)(ts)	60-180 S
平均升温速率(Tsmax to Tp)	<3 °C /S
液相温度(TL)	217℃
液相区保温时间(tL)	60-150 S
峰值温度(Tp)	245℃
高温区(峰值温度-5℃)停留时间(tp)	<10 S
降温速率	<6°C /S
室温至峰值温度停留时间	<6 min

回流焊说明


- 1. 回流焊不可以做两次以上
- 2. 当回焊时,不要在材料受热时用力压胶体表面

烙铁焊接说明

- 1. 当手工焊接时,烙铁的温度必须小于300℃,时间不可超过3秒
- 2. 手工焊接只可焊接一次

修补说明

LED 回流焊后不应该修补,当修复是不可避免时,必须使用双头烙铁 (如下图),但必须事先确认此种方式会或不会损坏 LED 本身的特性。

运输及存储

1. 运输及适用范围

所有产品在运输过程中, 需保持正面朝上, 防潮防水, 运输过程中逼免挤压、碰撞和剧烈震动。

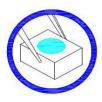
2. 产品储存及期限

2.1 未打开原始包装,建议储存环境:温度5℃~30℃,85%RH以下,当库存超过两个月,使用前做除湿处理,

除湿条件: 75℃/12 小时;

- 2.2 打开原始包装后,建议储存环境:温度 5℃~30℃,60%RH 以下;
- 2.3 打开包装后,元件应在96小时(4天)使用;且贴片应尽快焊接;
- 2.4 如果干燥剂失效或元件暴露于空气中越过96小时(4天),应作除湿处理。

3. 静电防护


LED 是静电敏感器件,虽然 LED 产品具有优异的抗静电能力,但每经历一次静电释放产生的冲击,都会对 LED 造成一定程度的损坏。因而在使用 LED 产品过程中需要做好静电防护措施,例如佩戴防静电手套及防静电手环等。

注意事项

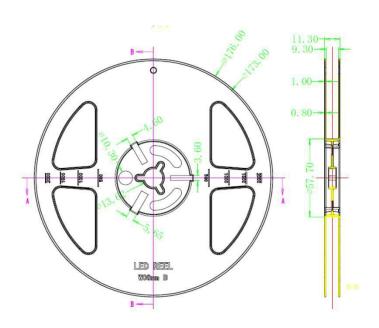
LED 封装为改性环氧树脂,相比硅胶工艺,改性环氧树脂有较好的硬度,在一定程度上能改善由于按压表面胶体而造成灯珠损坏,且吸嘴在吸压表面胶体时,不会因为胶体过软而损坏灯珠。其次改性环氧树脂在密封性上要大大优于硅胶,起到良好的防潮性。

1. 通过使用适当的工具从材料侧面夹取

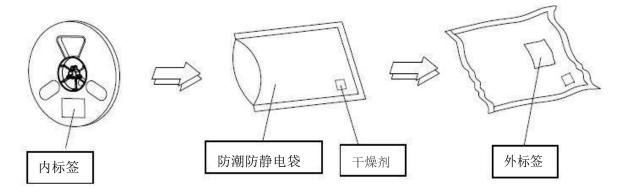

2. 不可用在 PH<7 的酸性场所

3. 不可直接用手或尖锐金属压胶体表面,它可能会损坏内部电路

4. 不可将模组材料堆积在一起,它可能会损坏内部电路



载带规格(单位: mm)


卷轴尺寸

单位: mm

防潮袋包装

包装数量: 4000PCS/袋

